

Bottisham Village College

KNOWLEDGE ORGANISER

SCIENCE

YEAR 9 ALL YEAR

KNOWLEDGE ORGANISERS

At Bottisham Village College, we are striving to create a five-year curriculum plan that builds effective revision strategies into homework and lessons, to ensure that students are able to place powerful knowledge into their long-term memories. Additionally, we hope that this will help build effective learning strategies from early in their time here at the college.

Based on evidence, we know that regular recall activities are the best way of achieving this goal and committing powerful knowledge into the students' memories.

At the start of each term, we shall publish all the knowledge organisers that students will require for their studies in each curriculum area. These will cover a range of aspects: facts, dates, characters, quotes, precise definitions and important vocabulary. We are clear: if this fundamental knowledge is secured, students can then develop their higher-level skills of analysis and critical understanding with greater depth.

They will be given an electronic A4 Knowledge Organiser (KO) booklet for each term containing all of the knowledge required. In lessons, Bottisham staff will be regularly testing this fundamental knowledge, using short-quizzes or even more formal "Faculty Knowledge Tests". The best way to use these organisers at home, is to follow a simple mantra:

- 1. Look at a certain aspects of a particular knowledge organiser
- 2. Cover up part of their knowledge organiser
- 3. Write it out from memory

4. Check and correct any spelling mistakes, missing bits or mistakes

So simple but so effective.

Cell Biology Year 9

A. Keywords.	
Nucleus	Controls the cell, stores genetic information (DNA)
Cell Membrane	Controls what moves in and out of the cell
Cytoplasm	Water based gel where most chemical reactions take place in cell
Chloroplast	The organelle in which photosynthesis takes place
Vacuole	Store of food, nutrients or waste in plants
Cell Wall	Rigid structure around cell in plants and algae
Mitochondria	Found in the cytoplasm. Perform respiration to release energy
Ribosome	Site of protein synthesis
Plasmids	Circular rings of DNA found in bacterial cells separate from main DNA
Eukaryote	Organisms whose cells contain membrane bound organelles (i.e. nucleus)
Prokaryote	Organisms who have a cell membrane but do not membrane bound organelles
Resolution	The ability to distinguish between two separate points
Magnification	How many times bigger an object is under a microscope than its actual size
Particles	A very tiny object, such as an atom or molecule that materials are made from.
Diffusion	The net random movement of particles from an area of high concentration to an area of low concentration
Differentiation	The process where cells become specialised for a particular function
Focus wheel	Part of the microscope used to bring the slide into focus (less blurry)
Eyepiece	The part of the microscope you look through. Magnifies the slide
Objective lens	Lens that also magnifies the slide.

B. Required Practical– Microscopy

Key Concepts:

2)

3)

- 1) Parts of the microscope and their function
 - How to use the formula to calculate magnification, actual size and image size
 - Converting between mm, µm and nm

C. Cell Structure

Key concepts:

2)

- 1) Parts and functions of an animal and plant cells
 - Definitions of prokaryotic and eukaryotic cells
- 3) Differences between prokaryotic and eukaryotic cells

Eukaryotic cells: animals, plants, fungi and protist. Contain a nucleus and other membrane bound organelles

Prokaryotic: bacteria are an example. DNA is not enclosed in nucleus. Instead, it is a single loop of DNA free in the cytoplasm.

D. Differentiation

E. Diffusion

Key Concepts:

- 1) Definition of diffusion
- 2) Examples of diffusion in plants and animals

Plants:

Carbon dioxide from air to inside leaf

Factors Affecting Rate of Diffusion:

- Difference in concentration (concentration gradient)
- Temperature
 - Surface area to diffusion through

Organisation

Year 9

A. Key words.

Qualitative	Data does not have to be in numeric form - it can also be in words and descriptions.—for example colour change in a food test. Blood vessels that carry blood away from the	Turns blue/ black Solution
	heart Blood vessels that carry blood towards the	Testing for Protein
Vein	heart.	Add biuret reagent (sodium
Capillary	The smallest blood vessels they run between and supply individual cells, they only one cell thick	sulfate) Positive result: turns purple
Communicable disease	Disease caused by pathogens that can be passed from person to person	Testing for Fats (Lipids)
Coronary Heart Disease (CHD)	A condition where the blood vessels supplying the heart become narrowed or blocked, causing the heart not to receive enough oxygen.	ethanol + food
Stent	A device placed inside an artery to keep it open so blood can flow.	Testing for Sugars Add Benedict's reagent.
Statins	A drug that helps treat coronary heart disease by lowering blood cholesterol levels.	Heat in a water bath. Positive result: Turns red/ orange.
Non- communicable disease	Diseases that are not infectious can cannot be caught from another organism.	C. The Leaf Epidermal t barrier and Spongy
Xylem	The non-living tissue that transports water and minerals around a plant	mesophyll - Gaps between the cells to allow carbon
Phloem	The living tissues that transports glucose around a plant	dioxide and oxygen to be
Stomata	The openings on a plant leaf that allows gasses to enter and leave the leaf.	Stomata - surrounded by guard cell which control gases entering and le
Mesophyll	Types of tissue of the inner leaf.	the leaf and water leaving the leaf.

water and minerals (xylem) and

sugars (phloem)

The digestive system Salivary glands using mechanical and chemical methods to Oesophagus release nutrients from food. Gall bladde **Enzymes chemically** Small intestin digest food. Large Append Rectum Anus E. The Heart and Blood Pulmonar The heart Arter pumps blood around the Vena body. It is in two Cava Pulmonary Vein halves, each half Right Left has two Atrium Atrium chambers. Left Right Ventricle Ventricle The blood is made up of four different components: Plasma Transports carbon dioxide, digested food, urea, hormones and heat Red Blood Cells Transport oxygen White Blood Cells Engulf pathogens and produce antibodies Platelets Involved in blood clotting

D. Digestive System

F. Cells, Tissues, Organs and Systems

A group of **cells** together are called a **tissue.** A group of **tissues** together are called an **organ.** A group of **organs** together are called a system.

A Inf	ection and Response	B. Spread	and Prevention of	of Disease
ELACE COLLY	Year 9	Disease can be	e spread by:	
A. Keywords.		Air: such as wi	hen you cough, sneeze o	or talk i.e. flu and the
Pathogen	A microbe (small living thing) that causes disease. Can be either a bacteria, virus, protist or fungus	Direct Contact come into con sex, cut and so Water: such a	:: disease spread when i tact with a healthy orga cratches, i.e. tobacco mo s	nfected organisms inisms such as touch, osaic virus, HIV
Communicable disease	A disease caused by pathogens that can be passed from one organism to another.	through raw/ uncooked meat or contaminated	Isolati Individi Hand ↑ washing 1	ng Plasters Jals Disinfectant
Non-communicable disease	A disease that is not infectious and cannot be passed from one organism to another.	drinking water i.e. cholera	Condoms	nting ases Destroying vectors
Bacteria	A single cell organism that has a cell wall but no nucleus. Can cause disease		Sneezing into tissue	↓ Not sharing drinks
Virus	Pathogens that are smaller than bacteria and can only reproduce inside the living cells of other organisms	C. Disease	s in Plants Tobacco Mosaic	Rose Black Spot
Toxin	A substance produced by bacteria that makes you ill	Cause	Virus Virus	Fungus
Antitoxin	A substance produced by a white blood cell that neutralises the toxin	Symptoms	Mosaic pattern of discoloration on leaves	Purple or black spots on leaves
White Blood Cells	A cell that defends against pathogens by engulfing them, making antibodies and antitoxins.	Transmission	Contact between diseased and healthy plants	Spores carried by the wind
Antibody	A chemical that binds to antigen of pathogens. A unique antibody is made for each pathogen.	Prevention	Good pest control and TMV resistant plants	Removing and burning affected leave and stems
Antigen	A marker on the surface of a pathogen that the antibody binds to	Causing Dise Bacteria and v	ase iruses replicate rapidly.	Bacteria produce
Vector	An animal that passes a disease from person to person	toxins that ma inside your ce	ike you feel ill. Viruses li lls, damaging and destro	ve and reproduce bying them.

D. Diseases in Humans			
	Cause and Transmission	Symptoms and treatment	Prevention
Measles	Virus, air	Fever and skin rash; none	Vaccination, isolating infected individuals
HIV/AIDs	Virus, unprotected sex	Flu like at start; antiretrovirals, no cure	Condoms, antiretrovirals
Salmonella	Bacteria, undercooked food	Fever, vomiting, diarrhoea; antibiotics for young and old	Keep raw chicken away from uncooked food
Gonorrhoea	Bacteria, unprotected sex	Green discharge from vagina or penis; antibiotics	Condoms
Malaria	Protist, mosquitos	Recurrent fever and shaking; combination of drugs	Insect nets, removing standing water, antimalarials

E. Human Defence Responses

The first line of defence includes your skin (forms scabs, antimicrobial), mucus that traps pathogens, cilia that waft pathogens to back of throat and stomach acid

Role of white blood cell	How it protects you against disease
Ingesting microorganisms bacterium white blood cell	Some white blood cells ingest (take in) pathogens, digesting and destroying them so they cannot make you ill.
Producing antibodies antibody antigen bacterium white blood cell antibody attached to antigen	Some white blood cells produce special chemicals called antibodies. These target particular bacteria or viruses and destroy them. You need a unique antibody for each type of pathogen. When your white blood cells have produced antibodies once against a particular pathogen, they can be made very quickly if that pathogen gets into the body again. This stops you getting the disease twice.
Producing antitoxins white blood cell toxin and antitoxin joined together toxin molecule toxin and toxin and toxin and toxin and toxin and toxin molecule toxin and toxin and toxin and toxin molecule toxin and toxin and toxin molecule toxin and toxin and toxin molecule toxin and toxin molecule toxin and toxin molecule toxin and toxin and toxin molecule toxin and toxin molecule toxin and toxin and toxin molecule toxin and toxin molecule toxin molecule toxin and toxin and toxin molecule toxin molecule toxin and toxin molecule toxin molecule toxin molecule toxin molecule toxin molecule toxin molecule toxin molecule	Some white blood cells produce antitoxins. These counteract (cancel out) the toxins released by pathogens.

Bioenergetics Year 9 Foundation

A. Keywords.	
Photosynthesis	The process by which plants make food using carbon dioxide, water and light.
	Carbon + Water 🔶 Glucose + Oxygen dioxide
Aerobic Respiration	Chemical reaction releasing energy from glucose in the presence of oxygen
Anaerobic Respiration	Chemical reaction releasing energy from glucose in the absence of oxygen
Endothermic	A chemical reaction that takes in energy from the surroundings e.g. photosynthesis
Exothermic	A chemical reaction that releases energy to the surroundings e.g. respiration
Chlorophyll	The green pigment contained in chloroplasts
Chloroplast	The organelle in which photosynthesis takes place
Respiration	The process by which living things release energy from glucose.
Mitochondria	Found in the cytoplasm. Perform respiration to release energy
Product	A substance made in a chemical reaction
Reactant	A starting substance in a chemical reaction
Oxygen Debt	The amount of extra oxygen the body needs after exercise to break down lactic acid
Lactic Acid	A waste product of anaerobic respiration in animal cells

B. Required Practical: Respiration and Exercise: Investigate the relationship between breathing rate and heart rate

Breathing rate and heart rate both **increase** during exercise. More **energy** is needed during exercise so more **oxygen** and **glucose** are needed. Increasing heart and breathing rate supplies **more** oxygen and glucose to muscles for **respiration** to occur. Muscles need energy to contract.

Carbon dioxide and lactic acid can also be removed quicker when breathing rate and heart rate increases

D. Aerobic Respiration Occurs in mitochondria				
Oxygen + Glucose → Carbon Dioxide + Water				
$6O_2 + C_6H_{12}O_6 \longrightarrow 6CO$	₂ + 6H ₂ O			
Product	Test	Positive Result		
Carbon Dioxide	Limewater	Colourless —> Cloudy		
Water	Cobalt chloride	Blue—> Pink		
	paper			

Respiration:

.

.

- Releases energy for living organisms
- Energy used for muscle contraction, transporting chemicals, absorbing food, building cells for growth, sending messages along nerves etc.
- Lots of mitochondria found in sperm cells, muscle cells, nerve cells, liver cells as these cells need lots of energy

C. Photosynthesis

٠

•

Carbon dioxide+ water → Glucose + Oxygen

 $6CO_2 + 6H_2O \rightarrow C_6H_{12}O_6 + 6O_2$

- Photosynthesis is how plants make their food. Glucose is essential for respiration in all living things.
- It takes place in the chloroplasts 🧹

Investigating Photosynthesis:

- We test for starch to investigate photosynthesis because glucose is soluble and plants store some glucose as starch.
- The test for starch is **iodine solution**. If starch is present, iodine solution turns **blue/black**.
- Destarch leaves by leaving them in the dark for 24 hours before practical. The iodine should stay orange.

E. Anaerobic Respiration

In animals:

•

.

•

Glucose → Lactic Acid

- Lactic acid is toxic and causes cramp
- anaerobic respiration anaerobic respiration anaerobic respiration 1 3 5 time running at full speed (min)
- Lactic acid broken down by oxygen– the amount of oxygen needed is 'oxygen debt'

\$ 75

50

Releases less energy than aerobic respiration

In yeast and plants:

Glucose --> Ethanol + Carbon Dioxide

- Carbon dioxide used to make bread rise
- Ethanol used in production of alcohol

Bioenergetics Year 9 Higher

A. Keywords.		
Photosynthesis	The process by which plants make food using carbon dioxide, water and light.	
	Carbon + Water 🔶 Glucose + Oxygen dioxide	
Aerobic Respiration	Chemical reaction releasing energy from glucose in the presence of oxygen	
Anaerobic Respiration	Chemical reaction releasing energy from glucose in the absence of oxygen	
Endothermic	A chemical reaction that takes in energy from the surroundings e.g. photosynthesis	
Exothermic	A chemical reaction that releases energy to the surroundings e.g. respiration	
Chlorophyll	The green pigment contained in chloroplasts	
Chloroplast	The organelle in which photosynthesis takes place	
Respiration	The process by which living things release energy from glucose.	
Mitochondria	Found in the cytoplasm. Perform respiration to release energy	
Product	A substance made in a chemical reaction	
Reactant	A starting substance in a chemical reaction	
Oxygen Debt	The amount of extra oxygen the body needs after exercise to break down lactic acid	
Lactic Acid	A waste product of anaerobic respiration in animal cells	

B. Required Practical: Respiration and Exercise: Investigate the relationship between breathing rate and heart rate

Breathing rate and heart rate both **increase** during exercise. More **energy** is needed during exercise so more **oxygen** and glucose are needed. Increasing heart and breathing rate supplies more oxygen and glucose to muscles for respiration to occur. Muscles need energy to contract.

Carbon dioxide and lactic acid can also be removed quicker when breathing rate and heart rate increases

D. Aerobic Respiration Occurs in mitochondria

Oxygen + Glucose - Carbon Dioxide + Water

 $6O_2 + C_6H_{12}O_6 \rightarrow 6CO_2 + 6H_2O$

Product **Positive Result** Test Carbon Dioxide Colourless —> Cloudy Limewater Cobalt chloride Blue—> Pink Water paper

Respiration:

.

.

٠ Releases energy for living organisms

Energy used for muscle contraction, transporting chemicals, absorbing food, building cells for growth, sending messages along nerves etc.

Lots of mitochondria found in sperm cells, muscle cells, nerve cells, liver cells as these cells need lots of energy

C. Photosynthesis

•

•

•

Carbon dioxide+ water → Glucose + Oxygen

- $6CO_2 + 6H_2O \rightarrow C_6H_{12}O_6 + 6O_2$
- Photosynthesis is how plants make their food. Glucose is essential for respiration in all living things.
- It takes place in the chloroplasts

Investigating Photosynthesis:

- We test for starch to investigate photosynthesis ٠ because glucose is soluble and plants store some glucose as starch.
- The test for starch is **iodine solution.** If starch is present, iodine solution turns blue/black.
- Destarch leaves by leaving them in the dark for 24 hours before practical. The iodine should stay orange.

E. Anaerobic Respiration

In animals:

٠

•

Glucose - Lactic Acid

- Lactic acid is toxic and ٠ causes cramp
- aerobic respiration 75 50 time running at full speed (min)
- Lactic acid broken down by oxygen- the amount of oxygen needed is 'oxygen debt'

100

8

- Lactic acid is converted back into glucose in the liver. ٠
- Releases less energy than aerobic respiration ٠

In yeast and plants:

Glucose - Ethanol + Carbon Dioxide

- Carbon dioxide used to make bread rise ٠
 - Ethanol used in production of alcohol

Atomic Structure and

Periodic Table Year 9

A. Keywo	rds.
Atom	The smallest part of an element that can
Molecule	Two or more atoms chemically bonded
Element	A substance made up of only one type of atom.
Compound	A substance made up of two or more different elements chemically bonded together
Nucleus	The centre of the atom. Contains neutrons
Proton	Charge of +1. Mass of 1. Found inside the
Neutron	Charge of 0. Mass of 1. Found inside the
Electron	Charge of -1. Mass of almost 0. Found in
Mixture	Two or more substances together that are
Group	Columns in the Periodic Table. Elements in the same group have similar properties
Period	Rows in the periodic table
Isotope	Isotopes of the same element have the same number of protons but different numbers of neutrons.

B. Atomic Structure • Electrons orbit 6 protons Protons and neutrons neutrons in nucleus electron Number of + proton protons = electrons neutron Where electrons are found. The shells can each hold this many electrons maximum: 2,8,8 **C. Separation Techniques** Used to separate mixtures. Ones you need to know: Filtration - get an insoluble solid from a liquid Crystallisation - get a soluble solid from a liquid by evaporating liquid off Distillation - get a pure liquid from a mixture of liquids Chromatography - separate mixtures of coloured compounds filter funnelfilter nane ٠ ٠

D. Atomic Structure

Particle	Charge	Mass
Protons	Positive (+)	1
Neutrons	Neutral (o)	1
Electrons	Negative (-)	nothing
15. Mass number	Number of 6 Neutrons + 5 Protons	
16. Atomic number	Number of protons	⊂ 5 ^B 5 Protons

Mendeleev—Russian chemist who ordered the elements in the Periodic Table. Important points:

- He left gaps for undiscovered elements
- He predicted properties of undiscovered elements

F. Group 1, Alkali Metals

- Li, Na, K, Rb, Cs, Fr
- Very reactive, only one electron in their outer shell
- Reactivity increases as you go down the group
- Reacts with oxygen to give metal oxides e.g. MgO
- React with water to give metal hydroxides (alkali) and hydrogen e.g. MgOH
- React with chlorine to give metal chlorides e.g. MgCl

Bonding, Structure and Properties of Matter

Year 9

A. Keywords.	
States of matter (states)	Whether a substance is a solid, liquid or gas at room temperature.
Solid	Substance with a fixed shape and volume. Cannot be compressed.
Liquid	Substance with affixed volume, but flows and can change shape. Cannot be compressed.
Gas	Substance with no fixed shape or volume. Easily compressed.
lon	An atom that has lost or gained electrons. An ion has a positive or negative charge.
Bonding	The changes atoms go through during a reaction to give them a stable arrangement
Compound	A substance made up of two or more different elements chemically bonded together
Electrostatic attraction	A strong force of attraction between oppositely charged objects.

B. Ionic Bonding

Atoms **transfer electrons** and form charged particles called **ions**.

Ionic bonding is the result of **electrostatic attraction** between oppositely charged ions.

Ionic bonding occurs between a metal and non-metal.

C. Covalent Bonding:

Atoms share electrons.

Covalent bonding occurs between non-metals only. Strong bonds between atoms, but weak forces between other covalent molecules.

D. Metallic Bonding:

All metals make positive ions.

Metals form a giant structure made of positive ions surrounded by delocalised or freely-moving electrons.

the 'sea' of delocalised electrons

Strong **electrostatic attraction** between the positive ions and negative electrons.

E. Models/diagrams of bonding:

Dot and cross diagrams:

Quantitative Chemistry

Year 9

A. Keywords.

Atom	Smallest part of an element that can exist
Molecule	Two or more atoms chemically bonded together
Element	A substance made up of only one type of atom.
Compound	A substance made up of two or more elements chemically bonded together.
Mass number	Number of neutrons + protons—the top number
Atomic number	Number of protons—the bottom number
Relative atomic mass	A _r The mass number of an atom. E.g. A _r of O is 16 and H is 1
Relative formula mass	M _r The mass of all the atoms of a molecule added together.
Conservation of mass	In a chemical reaction the total mass of reactants = total mass of products
Closed system	A system that cannot exchange matter with its surroundings
Open system	A system where mass can be lost to the surroundings

B. Mass Number and Atomic Number

The **mass number** is the sum of the protons and neutrons found in the nucleus of the atom

The **atomic number** is the number of protons found in the nucleus of the atom

Protons + Neutrons = Atomic Mass Number

C. Conservation of Mass

The law of conservation of mass states:

In a chemical reaction mass is neither lost or gained. The mass of reactants will equal the mass of the products.

D. Open and Closed Systems

The conservation of mass can easily be proved in a **closed system** as no products can escape.

An **open system** is more difficult because a product will be lost. However conservation of mass still applies.

Magnesium + Hydrochloric acid \rightarrow Magnesium Chloride + Hydrogen

Solid magnesium and a solution of hydrochloric acid react. The mass of both is measured. A solution of magnesium chloride and hydrogen **gas** is produced. The mass of the gas cannot be measured.

E. Relative Formula Mass

The sum of the relative atomic masses of the atoms in a compound.

There are no units for relative atomic mass because it a way of measuring the mass of atoms compared to each other.

E.g. Relative atomic masses:

Carbon = 12 and Hydrogen = 1

This means carbon is 12 times heavier than hydrogen.

Calculate the relative formula mass of Carbon dioxide (CO₂)

Relative atomic masses: Carbon = 12 and Oxygen = 16

 $CO_2 = (12 \times 1) + (16 \times 2) = 44$

Chemical Changes

Year 9 Foundation

A. Keywords.		
Reactivity	How likely a substance is to react with another substance.	
Reduction	The loss of oxygen.	
Oxidation	The gain of oxygen.	
Redox reaction	A reaction where one species is oxidised and another reduced.	
Electron	Charge of -1. Mass of almost 0. Found in shells, orbiting around the nucleus	
Soluble	A substance that will dissolve	
Insoluble	A substance that does not dissolve	
Crystallisation	A separation technique used to separate a soluble solid from a liquid by evaporating the liquid to form crystals.	
Displacement reaction	A reaction where a more reactive element takes the place of a less reactive element in a compound.	

C. Reactivity Series otassium Sodium Lithium Calcium Magnesiu Increasing Carbon reactivity Zinc Iron Hydrogen Copper Silver Gold

• The reactivity series puts metals in order least reactive.

- Metals below carbon can be extracted by E.g. Iron oxide + Carbon \rightarrow Iron + Carbo
- Metals below hydrogen can be extracted reduction.
- E.g. Copper oxide + Hydrogen \rightarrow Copper
- A more reactive metal will displace a less its compound.

E.g. Copper sulfate + Zinc \rightarrow Zinc sulfate

E. Oxidation and Reduction

Magnesium + Oxygen \rightarrow Magnes

The Magnesium has been oxidised because oxygen.

Copper oxide + Carbon \rightarrow Copper + The Carbon has been **oxidised** because it has gained oxygen. The Copper has been **reduced** because it has lost oxygen.

B. Required Practical: Making a Soluble Salt				
 React an acid with an excess of m oxide, hydroxide or carbonate until n 	etal, metal 2. Filter the mixture to get a solution of the salt with the excess solid left behind start evaporating the water from the solution. 4. Turn of the heat and leave until all of the water has evaporated, leaving the solid salt behind.			
order of the most to	D. Reactions of Acids			
cted by carbon reduction. • Carbon dioxide	General Equations: Acid + Metal → Salt + Hydrogen			
	Acid + Metal Hydroxide → Salt + Water			
racted hydrogen	Acid + Metal Carbonate \rightarrow Salt + Water + Carbon Dioxide			
Copper + Water				
e a less reactive one from	Hydrochloric acid produces chloride salts.			
	• Sulfuric acid produces sulfate salts.			
In the sulfate + Copper In the sulfate + Copper				
	Iron + Hydrochloric acid \rightarrow Iron chloride + Hydrogen			
DN	Iron + Sulfuric acid \rightarrow Iron sulfate + Hydrogen			
Magnesium oxide	Iron + Nitric acid \rightarrow Iron nitrate + Hydrogen			
because it has gained				
and a Contrar disside	Metal hydroxides neutralise the acid.			
oper + Carbon dioxide	Insoluble metal hydroxides are called bases			

Soluble metal hydroxides are called alkalis •

Keywords

Chemical Changes

Year 9 Higher

A. ICY WOI'US.		
Reactivity	How likely a substance is to react with another substance.	
Reduction	 The loss of oxygen. The gain of electrons. 	
Oxidation	 The gain of oxygen. The loss of electrons. 	
Redox reaction	A reaction where one species is oxidised and another reduced.	
Electron	Charge of -1. Mass of almost 0. Found in shells, orbiting around the nucleus	
Soluble	A substance that will dissolve	
Insoluble	A substance that does not dissolve	
Crystallisation	A separation technique used to separate a soluble solid from a liquid by evaporating the liquid to form crystals.	
Displacement reaction	A reaction where a more reactive element takes the place of a less reactive element in a compound.	

- The reactivity series puts metals in order of the most to least reactive.
- Metals below carbon can be extracted by carbon reduction.
- Metals below hydrogen can be extracted by steam reduction.
- A more reactive metal will displace a less reactive one from its compound.

E. Oxidation and Reduction

Magnesium + Oxygen → Magnesium Oxide The Magnesium has been oxidised because it has gained oxygen.

The Magnesium has lost electrons because it has made an ionic bond with oxygen.

0.I.L.R.I.G

Oxidation Is Loss (of electrons), Reduction is Gain (of electrons)

- Hydrochloric acid produces chloride salts.
- Sulfuric acid produces sulfate salts.
- Nitric acid produces nitrate salts.

Iron + Hydrochloric acid \rightarrow Iron chloride + Hydrogen

- Iron + Sulfuric acid \rightarrow Iron sulfate + Hydrogen
- Iron + Nitric acid \rightarrow Iron nitrate + Hydrogen

Metal hydroxides neutralise the acid.

.

- Insoluble metal hydroxides are called bases
- Soluble metal hydroxides are called alkalis

Energy Changes Year 9

A. Keywords.			
Exothermic Reaction	One that transfers energy to the surroundings so the temperature of the		
Endothermic	surroundings increases One that absorbs energy from the surroundings so		
Reaction	the temp. of the surroundings decreases		
Reactants	A starting substance used in a chemical reaction		
Products	A substance made in a chemical reaction		
Energy Level Diagram	A diagram to show if a reaction is exo or endothermic		

B. Temperature Change Required Practical

Monitor the temperature rise as small volumes of sodium hydroxide solution are added to dilute hydrochloric acid. The acid will be contained in an insulated cup.

Reaction progress

An exothermic reaction gives out energy, so products have less energy than reactants, but temperature of the surroundings goes up.

D. Endothermic Reactions

C Energy Energy absorbed A+B

Reaction progress

An endothermic reaction takes in energy, so products have more energy than reactants, but temperature of the surroundings goes down

E. Reactions

In every chemical reaction, bonds need to be broken before new bonds can be formed.

Reactants

Products

Energy Year 9

A. Keywords.

Energy system	An object or group of objects that when changed there is a change in the way the energy is stored.
Kinetic energy	The energy of a moving object
Elastic potential energy	The amount of energy stored in a stretched spring
Gravitational Potential Energy	The amount of energy gained by an object raised above the ground
Renewable energy source	A resource that is replenished as it is used.
Non-renewable energy resource (finite)	A resource that will run out.
Work Done	When a force causes an object to move through a distance
Velocity	The speed and direction of an object

B. Equations

	= 0.5 x mass x (velocity) ²
Kinetic energy	$\left[E_{\rm k} = \frac{1}{2} m v^2\right]$
	= 0.5 x spring constant x (extension) ²
Elastic potential	$\begin{bmatrix} E_{e} &= \frac{1}{2} k e^{2} \end{bmatrix}$
chergy	
	= mass x gravity x height
Gravitational Potential Energy	$\begin{bmatrix} E_{p} = m g h \end{bmatrix}$
- 07	

C. Energy Stores and Systems

A system changes when an object is:

- Projected upwards
- Moving and hits an obstacle
- Accelerated by a constant force
- Slowing down

•

.

•

Another example of a change in a system is bringing water to boil in an electric kettle.

A system can be changed by:

- Heating
- Work done by forces .
- Work done when a current flows

D. Gravitational Potential Energy and Kinetic Energy

The higher an object is above ground level the greater the gravitational potential energy (GPE).

An object with a large mass will have more **GPE** than an object with less mass held at the same height.

An object which falls (a change in the system) will transfer GPE into kinetic energy.

An object with a large mass will have more kinetic energy than an object with less mass

000----000

moving at the same velocity.

G. Energy Resources

Energy resources are used for transport, generating electricity and heating. Energy resources are selected based on

their reliability and environmental impact. Finite (Non-renewable)

A

Coal, Oil, Gas and Nuclear fuel.

E. Elastic Potential Energy

The more a spring is stretched the greater the **elastic** potential energy.

The spring constant is a value that defines how difficult it is to stretch the spring.

If a spring is stretched beyond the limit of

proportionality then it will not return to its original shape and the formula for elastic potential energy no longer applies.

F. Work Done and Power

A more Two electric motors are used to lift a 2 N weight through a vertical height of 10 m. powerful device Motor one does this in 5 seconds. will be able to Motor two does this in 10 seconds move an object faster than less powerful one. A more powerful device transfers more energy per second.

Renewable

Biofuel, Wind, Hydroelectricity, Geothermal, Tides, Water waves, The Sun.

Electricity Year 9

A. Keywords.	
Alternating current (ac)	Current that constantly changes direction (back and forth).
Ammeter — A—	Used to measure the current flowing through a component/ part of a circuit. Must be connected in series.
Cell/battery + + ⊢	Component that provides the potential difference to make a current flow (charges to move around the circuit).
Current	Rate of flow of electric charge. Measured in amps (A).
Direct current (dc)	Current that flows in one direction only
Fuse	Resistor that melts if the current is too high.
Mains electricity	UK mains electricity is an ac supply (used when plugging appliances in). It is 230V and has a frequency of 50 Hz.
Ohmic conductor	A conductor in which the resistance remains constant. This means the current flowing through it will be directly proportional to the potential difference.
Parallel circuit	There are two or more parallel 'branches' providing more than one path the electrons can follow around the circuit.
Potential difference	The potential difference between two points in a circuit is the work done when a coulomb of charge passes between the points. Measured in volts (V). A potential difference is needed for a current to flow.
Power	The rate at which energy is tranferrred (energy transferred per second).
Resistance	A measure of how hard it is for electrons to flow. Measured in ohms (Ω). If the resistance increases it is harder for electrons to flow so current decreases.
Series circuit	All of the components are in a single loop. There is only one path that electrons can follow around the circuit.
Voltmeter	Used to measure the potential difference across a component. Must be connected in parallel to the component being measured.

B. Required Practical: Resistance of a wire

You need to know how to set up a circuit to investigate how resistance changes with the length of a piece of wire.

Vary the length of the wire, measuring potential difference and current each time. Then calculate resistance for each wire length.

C. Series and Parallel Circuits

Series and parallel circuits:

Circuits can be wired in series, where there is only one path for the charge (electrons), or in parallel, where there are 2 or more paths.

In series circuits, the current is the same all the way round, but the potential difference of the cell/battery is equal to the sum of the potential difference of the components.

n parallel circuits, the current splits in the pranches. The potential difference across each pranch is equal to the potential difference across the cell/battery.

D. Eq	uatio	ns			
Q = Charge [C]	= x =	t Curre [A]	nt x ti [s]	me	
V = Potentia [\	= al differ /]	l ence =	x Curre [A]	R nt x I	Resistance [W]
Resistar	nce = po	otentia	l differ	ence	/ current
[Ω]		[V]		[A]
Power =	currer	it x po	tential	diffe	rence
[W]	[A]		[V]		
Power =	= currer	it ² x re	sistand	e	
[W]	[A]		[Ω]		

E. Wires in a Plug earth wire (green and yellow) neutral wire (blue) cable clamp plastic case cable

Wires in 3 -core cable:

Live wire (brown) - carries the current from the supply to the appliance. Potential difference between the live wire and earth is 230V.

Neutral wire (blue) - completes the circuit by carrying the current from the appliance back to the supply. The neutral wire is at or close to OV. Earth wire (green & yellow) - safety wire which stops the appliance becoming live. The earth wire is at OV. It only carries current if there is a fault. It is only needed if the appliance has a metal case e.g. toaster.

Particle Model Year 9

A. Keywords		
Boiling	The change of state from liquid to gas that occurs when bubbles of the substance in its gas state form throughout the liquid.	
Condensing	Change in state from a gas to a liquid. It can happen at any temperature below the boiling point.	3
Density	Density is defined by the equation mass/volume. It is usually measured in kg/m ³ (can be in g/cm ³).	
Evaporating	Change in state from a liquid to a gas that occurs when particles leave the surface of the liquid only.	
Freezing	Change in state from a liquid to a solid at the melting point of a substance.	
Gas pressure	Pressure is force per unit area. The pressure of a gas is due to the force the gas particles exert on the walls of the container.	
Internal energy	The total kinetic and potential energy of all of the particles that make up the system.	
Melting	Change in state from a solid to a liquid at the melting point of a substance.	
Particle motion in a gas	Particles in a gas move randomly.	
Sublimation	Change in state from a solid to a gas or a gas to a solid (missing out liquid phase).	

B. Required Practical - Density

1. Use mass balance to find the mass of the object.

2.Calculate the volume of the object. If it is a regular shape like a cuboid, use a ruler to measure the length, width and height. Calculate the volume using 1 x w x h. If the object is irregular like a rock, set a eureka can of water and measuring cylinder under the spout. Gently submerge the object in the water and collect the water that is displaced to find the volume.

3.Use the equation: Density = mass / volume to calculate the density of the object.

C. Particle Model

Solid	Liquid	Gas
Not very compressible	Not very compressible	Highly compressible
High density	High density	Low density
Definite volume	Definite volume	Fills container completely
Retains it's own shape	Assumes shape of container	Assumes shape of container
Particles vibrate around a fixed position	Particles can move passed one another	Particles more randomly all the time

D. Changes of State

When particles gain energy:

	Melting	Evaporating or boiling
Description	Solid to liquid	Liquid to gas
Closeness of particles	Stay close together	Become much further apart
Arrangement of particles	Regular to random	Stay random
Motion of particles	Start to move around each other	Become able to move quickly in all directions

When particles lose energy:

	Condensing	Freezing
Description	Gas to liquid	Liquid to solid
Closeness of particles	Become much closer together	Stay close together
Arrangement of particles	Stay random	Random to regular
Motion of particles	Stop moving quickly in all directions, and can only move around each other	Stop moving around each other, and only vibrate on the spot

E. Heating Curve

A steep line shows particles gaining energy.

A flat line shows when the substance is changing state.

Atomic Structure

Year 9

A. Keywords			
Activity	The rate at which a source of unstable nuclei decays.		
	Measured in becquerel (Bq).		
Alpha	Made up of two protons and two neutrons (the same as a		
particle	helium nucleus).		
Atomic	The number of protons in an atom		
number			
Beta particle	A fast moving electron given out by the		
	nucleus		
Electron	Charge of -1. Mass of almost 0. Found in shells, orbiting		
	around the nucleus		
Gamma ray	Electromagnetic radiation given out by the nucleus.		
lon	An atom that has lost or gained electrons. An ion has a		
	positive or negative charge.		
Isotopes	Isotopes of the same element have the same number of		
	protons but different numbers of neutrons.		
Mass	The number of protons and neutrons in the nucleus		
number	The number of protons and neutrons in the nucleus.		
Neutron	n Charge of 0. Mass of 1. Found inside the nucleus		
Nucleus	The centre of the atom. Contains neutrons and protons.		
Proton	Charge of +1. Mass of 1. Found inside the nucleus.		

B. Protons, neutrons, electrons

Particle	Relative Mass	Relative Charge
Proton	1	+1
Neutron	1	0
Electron	(almost) 0	-1

Protons + Neutrons = Atomic Mass Number

¹² C

Number of Protons = Atomic Number

- The Mass number is the **large** number, it is the total number of protons and neutrons.
- The Atomic number is the **small** number, it is the number of protons alone.

C. History of the Atom

SOLID SPHERE MODEL

- Discovered by JJ Thomson.
 A ball of positive charge
 Negative electrons embedded throughout.
- Discovered by Ernest Rutherford through the alpha scattering experiment:

• Discovered by John Dalton

• Atoms are a solid spherical ball.

PLUM PUDDING MODEL

- Adaptation by Niels Bohr
- Suggested electrons orbit in shells.

 most alpha particles travelled straight through gold foil showed the atom was mainly empty space.

♦ some alpha particles were deflected by small angles and some by large angles. This showed there was a small central, positively charged nucleus, where most of the mass was concentrated.

0

NIELS BOHR

• James Chadwick later discovered the neutron

D. Model of the atom

- Radius of an atom is approx. 1 x 10⁻¹⁰ metres.
- The radius of the nucleus is approx. 1/10,000 of the radius of the atom.
- The protons and neutrons make up the nucleus.
- The electrons are found in shells orbiting the nucleus. The first shell

E. Alpha, Beta and Gamma Radiation

- Some atomic nuclei are unstable, they give out radiation to become more stable. This is called radioactive decay.
- Radioactive decay happens randomly.

	Alpha	Beta	Gamma
What it is	2 protons and 2 neutrons	High speed electron	Electromagnetic wave
Penetrating Power	Least – stopped by paper	Medium— stopped by thin sheet of alumin- ium	Most—Stopped by a thick sheet of lead
Ionising Power	Strong	Moderate	Very weak
Range in Air	A few cm	Approx. 1 m	At least 1 km